

Deep Sky Imaging Acquisition Workshop: Electronics

Gabe Shaughnessy

What do you want to achieve?

- Pretty pictures!
 - Color: OSC, RGB, LRGB
 - False color: HaRGB, SHO, HOO, IR-RGB
- Advance what you can image
 - First images of common targets
 - M31, M27, M57, etc.
 - More challenging targets:
 - Veil nebula
 - Dark nebula: Iris nebula, Ghost nebula, etc
 - Pushing the limits of you, your system and your skies
 - Spaghetti nebula
 - Soap bubble nebula
 - Deep integration of galaxy tails
 - IFN
 - The sky is literally the limit
- Science!
 - SN detection, Variable stars, Spectra studies, Exoplanet transit, etc.

Last time...

Mechanics of setting up your rig

- Counterweights
- Mount
- Cable Management
- Focus
- Polar alignment
- Environment sensors
- Dew prevention

Optical considerations:

- Telescopes
- Contrast
- Filters
- Aberrations

Guiding:

- Why we guide
- Guiding options/settings

Imaging sensors

The Photoelectric effect

Incident light can emit electrons off a material

Known since mid-1800s

Albert Einstein proposed explanation in 1905, awarded Nobel Prize in 1921

Principle behind solar cells

The Pixel

A photoactive unit of material that converts photons to measurable electrical signals.

Millions of pixels form the imaging sensor

Pixel size helps determine imaging scale:

Image scale = 206 * pixel_size / focal_length

The Pixel - A photon bucket

From: https://cloudbreakoptics.com/blogs/news/astrophotography-pixel-by-pixel-part-

The Pixel - Brightness

Image brightness directly related to how full the silicon bucket gets

The Pixel - Capacity

Full well capacity

- Measured in Electrons
- How deep is the silicon bucket

Feature	Standard			
CCD Manufacturer & Model	Kodak KAF-8300			
CCD Architecture	Full Frame			
Microlens	Yes			
Anti-blooming	Yes (1000x)			
Imager Size: (WxH)	17.96mm x 13.52mm			
Pixel Array (WxH):	3348×2574 total pixels, 3326×2504 active (visible)			
Pixel Size:	5.4µm x 5.4µm			
Pixel Full Well Depth	25,500 electrons			
Absolute Quantum Efficiency	Peak: 57% 400nm: 38%			
Pixel Dark Current	<0.02 electron per second at -10°C			
Dark Current Doubling	5.8° C			
Intrinsic Read Noise	8 electrons RMS			
Dynamic Range	70 db			
Charge Transfer Efficiency	>0.999995			
	Manufacture			

The Pixel - Saturation

Saturated pixels contain no meaningful information:

- Pixel at 100% capacity
- Can cause spill-over in CCDs
 - Blooming

For final image:

- Affects color saturation
- HDR methods have difficulty with saturated stars

The Pixel - Quantum Efficiency

Measure of how good your chip is at converting photons to electrons

Low QE chips need longer integration times to get the same signal

Feature	Standard			
CCD Manufacturer & Model	Kodak KAF-8300			
CCD Architecture	Full Frame			
Microlens	Yes			
Anti-blooming	Yes (1000x)			
Imager Size: (WxH)	17.96mm x 13.52mm			
Pixel Array (WxH):	3348×2574 total pixels, 3326×2504 active (visible)			
Pixel Size:	5.4µm x 5.4µm			
Pixel Full Well Depth	25,500 electrons			
Absolute Quantum Efficiency	Peak: 57% 400nm: 38%			
Pixel Dark Current	<0.02 electron per second at -10°C			
Dark Current Doubling	5.8° C			
Intrinsic Read Noise	8 electrons RMS			
Dynamic Range	70 db			
Charge Transfer Efficiency	>0.999995			
	Manufacture			

Gain / ISO

High gain effectively shortens the pixel bucket capacity

- Gain increases effect of 1 photon striking the pixel, does not add new data!
- Trade-off:
 - Fills bucket faster
 - Lower dynamic range

Gain = # electrons / ADU

The ADC

The ADC (Analog to Digital Converter) take the electrons in each bucket and converts them to digital units

- 16-bit: 65536 levels
- 12-bit: 4096 levels

Photon collection improvements

CCD

CCD - Charge-coupled device

- First popular form of electronic imaging
- Global shutter
- Columns defects
- Binning without extra read noise

CMOS

- Each pixel has its own readout
 - Generally run warmer than CCDs
- Newer technology
- Rolling shutter
- Read noise typically lower
- Amp glow prevalent in some sensors
- Digital binning higher read noise

Binning

Binning can increase signal at expense of resolution

Read noise impacts:

- Increases if binning done at software level (CMOS)
- Stays the same if binning done at hardware level (CCD)

Noise

What is noise?

Noise sources have two components:

- Average amplitude (this can be removed with subtraction)
- Dispersion (this is the random part)
 - Can be reduced by stacking many subframes

Noise: random fluctuations in data that cannot be calibrated out

Dynamic Range

Total capacity of pixel divided by noise (typically just read noise)

Reducers of DR:

- Added noise
- Shallow well depth

Dynamic Range in dB =
$$20 \log_{10} \left(\frac{\text{FullWellCapacity}(e^{-})}{\text{ReadNoise}(e^{-})} \right)$$

Dynamic Range in stops = $\log_2 \left(\frac{\text{FullWellCapacity}(e^{-})}{\text{ReadNoise}(e^{-})} \right)$

Read Noise

Noise added when the signal from each pixel is measured and converted to digital unit

- Specific to camera electronics

How to measure read noise:

Read Noise (ADU) =
$$\frac{Std(\text{Bias}_1 - \text{Bias}_2)}{\sqrt{2}}$$

Read Noise (e^-) = $gain \cdot \frac{Std(\text{Bias}_1 - \text{Bias}_2)}{\sqrt{2}}$

Thermal Noise - Dark Current

Added noise from thermal fluctuations of electrons

Units of electrons / second

- Increases with time

Decreases with temperature

Read Noise vs. Dark Current

Summary:

Read noise is fixed

Dark current increases with time and temperature

Best case scenario is reduce dark current below read noise

Example: ASI6200MM

20

15

10

5

ASI6200MM

Dark Noise = Read Noise

Dark Noise = 1/4 Read Noise

12

14

Dark Noise = 1/10 Read Noise

Example: QSI683

Model 683 CCD Image Sensor Specifications

Feature	Standard	Optional	
CCD Manufacturer & Model	Kodak KAF-8300	Kodak KAF-8300 (no coverglass)	
CCD Architecture	Full Frame	Full Frame	
Microlens	Yes	No	
Anti-blooming	Yes (1000x)	Yes (1000x)	
Imager Size: (WxH)	17.96mm x 13.52mm	17.96mm x 13.52mm	
Pixel Array (WxH):	3348×2574 total pixels, 3326×2504 active (visible)	3348×2574 total pixels, 3326×2504 active (visible)	
Pixel Size:	5.4µm x 5.4µm	5.4µm x 5.4µm	
	Typical Values		
Pixel Full Well Depth	25,500 electrons	25,5000 electrons	
Absolute Quantum Efficiency	Peak: 57% 400nm: 38%	Peak: 60% 400nm: 40%	
Pixel Dark Current	<0.02 electron per second at -10°C		
Dark Current Doubling	5.8° C	5.8° C	
Intrinsic Read Noise	8 electrons RMS	8 electrons RMS	
Dynamic Range	70 db	70 db	
Charge Transfer Efficiency	>0.999995	>0.999995	
	Manufacturer's	CCD Imager Specifications	
	KAF-8300 (PDF)		

QSI683:

Read Noise = $8e^{-}$

Dark Noise ~
$$0.02 \frac{e^-}{s \cdot pix} \cdot 2^{(T+10)/5.8}$$

Shot Noise - Poisson

Poisson probability distribution describes counts:

- Photons / s
- Raindrops / min
- Blue cars / hour

For a Poisson distribution:

Std. Dev. = \sqrt{Mean}

$$SNR = \frac{Signal}{Noise} = \frac{Mean}{\sqrt{Mean}} = \sqrt{Mean}$$

Signal to Noise Ratio

Uncalibrated single frame:

$$\text{SNR}_{\text{Pixel}} = \frac{S_{\text{object}}}{\sqrt{S_{\text{object}} + S_{\text{sky}} + \text{Dark Current} + \text{RN}^2}}$$

Calibrated single frame:

Measuring Your Camera

Batch Processing Benchmarks Coordinate Transformations Development Ephemerides Image Analysis	* * * * *	<u>.</u>
Instrumentation		BasicCCDParameters
Noise Reduction Render Utilities	* *	CalculateSkyLimitedExposure WavefrontEstimator
📕 Run Script from Editor	^R	
Execute Script File		
Feature Scripts Edit Scripts		

$$Gain\left(\frac{e^{-}}{ADU}\right) = \frac{Mean(Flat_{1} + Flat_{2})}{Var(Flat_{1} - Flat_{2})}$$

Read Noise (ADU) = $\frac{Std(Bias_{1} - Bias_{2})}{\sqrt{2}}$
Read Noise (e⁻) = gain $\cdot \frac{Std(Bias_{1} - Bias_{2})}{\sqrt{2}}$

v0.3.1 — A script to			Basic CCD Parameters v0.3.1				
) determine basic CC	CD Parameters					
pter_autoflat_FLAT_	OIII_BIN1_10C_004_2	20200802_010750_5	70_GA_0_0	▼ ISO:0 Exp[s]:20.280000			
m68_adapter_autoflat_FLAT_OIII_BIN1_10C_005_20200802_010815_711_GA_0_0			11_GA_0_0	▼ ISO:0 Exp[s]:20.240000			
5200MM_BIAS_L_202	200630_010340_887	r_U		ISO:0 Exp[s]:0.000000		
5200MM_BIAS_L_202	200630_010356_075	=		▼ ISO:0 Exp[s]:0.000000			
				_			
	202000000000000000000000000000000000000						
4M_Dark_10C_300s_	DARK_No_Filter_2	0200627_154647_45	0_0	ISO:0 Exp[s	;]:300.000000		
4M_Dark_10C_900s_	DARK_L_20200629_	231309_465_U		ISO:0 Exp[s	;]:900.000000		
1: 300 Exposure	[s] D2: 900						
Available>			•	•]			
				Report	Quit		
R/C0	G/C1	B/C2	-/C3	Units			
501.590				ADU			
			ADU				
4.567			-	ADU	_		
4.567			-	ADU ADU	_		
4.567 501.710 18.918			-	ADU ADU ADU			
4.567 501.710 18.918 502.230			-	ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585				ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211				ADU ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655				ADU ADU ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181				ADU ADU ADU ADU ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181 6.400				ADU ADU ADU ADU ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181 6.400 0.120				ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181 6.400 0.120 0.787 2.560				ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181 6.400 0.120 0.787 3.560 4.555				ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU e ADU e ADU			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181 6.400 0.120 0.787 3.560 4.525 0.002				ADU ADU ADU ADU ADU ADU ADU ADU ADU e/ADU e- ADU e-			
4.567 501.710 18.918 502.230 24.585 54006.211 259.655 1003.181 6.400 0.120 0.787 3.560 4.525 0.002 51551.745				ADU ADU ADU ADU ADU ADU ADU ADU ADU ADU e/ADU e ADU e/sec e			
	2000MM_BIAS_L_202 2000MM_BIAS_L_202 4M_Dark_10C_300s_ 4M_Dark_10C_900s_ 1: 300 Exposure eadout depth: 16 Available>	i200MM_BIAS_L_20200630_010340_887 i200MM_BIAS_L_20200630_010356_075 i200MM_BIAS_L_20200630_010356_075 i4M_Dark_10C_300s_DARK_No_Filter_2 i4M_Dark_10C_900s_DARK_L_20200629_ 11: 300 Exposure[s] D2: 900 eadout depth: 16 Available> A/D bits: R/C0 G/C1	i200MM_BIAS_L_20200630_010340_887_U i200MM_BIAS_L_20200630_010356_075_U i4M_Dark_10C_300s_DARK_No_Filter_20200627_154647_45 IAM_Dark_10C_900s_DARK_L_20200629_231309_465_U I: 300 Exposure[s] D2: 900 eadout depth: 16 A/D bits: 16 Available> R/C0 G/C1 B/C2	i200MM_BIAS_L_20200630_010340_887_U i200MM_BIAS_L_20200630_010356_075_U 4M_Dark_10C_300s_DARK_No_Filter_20200627_154647_450_U 4M_Dark_10C_900s_DARK_L_20200629_231309_465_U 11: 300 Exposure[s] D2: 900 eadout depth: 16 A/D bits: 16 Available> R/C0 G/C1 B/C2 -/C3	i200MM_BIAS_L_20200630_010340_887_U ▼ ISO:0 Exp[s i200MM_BIAS_L_20200630_010356_075_U ▼ ISO:0 Exp[s 4M_Dark_10C_300s_DARKNo_Filter_20200627_154647_450_U ▼ ISO:0 Exp[s 4M_Dark_10C_900s_DARK_L_20200629_231309_465_U ▼ ISO:0 Exp[s 11: 300 Exposure[s] D2: 900 ▼ ISO:0 Exp[s eadout depth: 16 A/D bits: 16 Maximum ADU: 65535 Available> ▼ Report ▼		

Sky Limited Exposure

Read noise is unavoidable

- When does the photon flux overwhelm read noise?
- Light pollution is big factor

Read Noise² +
$$tE_{sky} = tE_{sky} \cdot (1+p)^2$$

 $\implies t = \frac{\text{Read Noise}^2}{E_{sky} \cdot ((1+p)^2 - 1)}$

$$E_{\rm sky} = \frac{(\text{Test Image ADU} - \text{Pedestal}) \cdot \text{Gain}}{t_{\rm exposure}}$$

Subexposure length

Considerations:

- Total exposure length
- Read noise
- Sky limited exposure
- Temperature changes
- Cosmic-ray hits
- Airplanes
- Satellites
- Disk drive space

Effect of Read Noise

Effect of Quantum Efficiency

Comparisons: QHY16200A vs. ASI6200MM

QHY16200A SPECIFICATION		
Model	QHY16200A	
CCD Sensor	KAF16200 APS-H (Default: Grade 2) Full Frame CCD	
Pixel Size	6.0um*6.0um	
Resolution	4540 (H) *3630 (V)	
Effective Pixels	16.2 mega	
Effective Image Area	27.0mm*21.6mm APS-H format	
Readout Type	Progressive Scan	
Readout Noise	Typical 10 e	
System Gain	0.7e-/ADU at lowest Gain	
Full Well Capacity	41ke-	
Anti-Blooming Gate	2000x Saturation	
Exposure Time Range	1ms-10000sec	
AD Sample Depth	16bit	
Sensor Size	APS-H Format	
Pixel Binning	1x1,2x2,4x4	

High Conversion Gain switch

Read noise, full well, gain and dynamic range for ASI6200

Down the road

- Cameras and settings
- Calibration frames
- Acquisition software (SGP, etc.)
- Target planning/sequencing
- Data management
- Weather resources
- Observatory topics
- More processing topics
 - PS/PI

Looking for volunteers for some of these topics

Next time:

Open date, options:

- Pixinsight?
- Photoshop?
- Open forum?
- Additional imaging topics?

