

The January Membership Meeting

The upcoming General Membership Meeting of the MAS is going to be held on January 17th, at 8:00PM at the UW Milwaukee Physics Building, Room 133, which is located at 1900 E Kenwood Bld. Parking available in the Science Parking Lot (see the map below). Lee Keith will give a talk about Planetary Imaging.

With the upgrade of the Zscope to do narrowband imaging of deep-sky objects, members may not be aware of another class of imaging that also does not depend on dark skies or a large telescope, that of high resolution planetary imaging.

The digital revolution has reached this type of imaging with a vengeance in the past few years with exceptional cameras that are also inexpensive and software that is free! Lee will contrast the bad old days of planetary imaging with the digital imaging of planets and explain the differences with deep sky imaging. He will demonstrate the process of acquiring data and processing it, resulting in an image that shows detail invisible to the naked eye using inexpensive digital cameras from Orion & Celestron as well as software iCap from Celestron and RegiStax 6 from Cor Berrevoets. He will also share some of his images of Saturn and Jupiter.

The MAS Winter Meetings

The winter meetings of the Milwaukee Astronomical Society from January through April will be held at the University of Wisconsin-Milwaukee Physics building located at the corner of Kenwood Boulevard and Cramer Street in Milwaukee. Starting from May the meetings will return to the MAS Observatory in New Berlin.

issue: Membership Meeting Winter Meetings Christmas Party In the News Adopt a Scope Officers/Staff Keyholders

1

1

2

3

4

4

4

Inside this

Christmas Party 2013

This year the MAS hosted its annual Holiday Party on Saturday, December 7th, 2013 at the Observatory. Members and families (23 people) enjoyed pizza-soda-beer-cookies and fellowship with each other.

Photos courtesy of Dennis Roscoe.

Page 3

In the Astronomical News

Planet Formation: More Questions Than Answers

large-small-large.

847 and counting: that's the number of planets confirmed as existing around 642 stars within several hundred light-years of our Sun. And more than 2,000 additional detections are awaiting confirmation by follow-up observations. By far, the most potential exoplanets have been found by the NASA spacecraft Kepler (launched in 2009), whose mission is to find Earthlike planets in a habitable zone around other stars, by staring at 150,000 stars and recording minuscule dips in brightness.

So far, Kepler hasn't yet found an identical twin to Earth: a rocky body of similar mass, sweet with

liquid water, in the "Goldilocks zone" for temperatures just right for life as we know it to evolve. In fact. Kepler hasn't yet found even an exoplanetary system resem-System, rocky planets on the inside, gas giants in the outer reaches, and orbital periods

bling our Solar The first Earth-sized planets were found in December 2011 by NASA's Kep-System, with ler mission around a sun-like star Kepler-20. Kepler-20e is slightly smaller radially inward, ler mission around a sun-like star Kepler-20. Kepler-20e is slightly smaller radially inward, than Venus with a radius 0.87 that of Earth; Kepler-20f is a bit larger than but early when it Earth at 1.03 times the radius of Earth. Both are rocky but with scorching giants in the outer reaches, and orbital periods

situ formation is a hundred times what we see in our own Solar System. One possibility is that the mass still moved radially inward, but early when it was smaller chunks like gravel, boulders, or asteroids. That

That is somewhat

cause the mass

required for in

be-

unsettling

ranging from months to centuries. Instead, most exoplanetary systems are so bizarre they are challenging astronomers and computational astrophysicists to reexamine long-held models of how planets form.

One big early surprise (1995) was the groundbased discovery of "hot Jupiters:" gas giants the size of Jupiter in orbits around their parent stars much closer than Venus—or even Mercury—is to the Sun. How does something that massive form so close to a parent star? Would there have been enough material for such a big body to form in place, without being ripped apart by tidal forces? Or might it accrete from dust and rocks farther out in its planetary system and later migrate inward toward its parent star? Later, lower mass, rocky planets—"super-Earths" only a few times the mass of Earth—were identified from Kepler data.

Meantime, in December 2011, confirmation was announced of two rocky Earth-sized planets in the Kepler-20 system. They are two of five planets still leaves an important question: what processes in a whirling solar nebula allow smaller chunks to stick together to accrete larger objects and eventually planets?

orbiting a G-type star a little smaller and cooler

than our Sun. But the entire planetary system could

almost fit inside the orbit of Mercury; both Earth-

sized planets zoom around their star in less than three weeks; the three other planets are slightly

smaller than Neptune; and the sequence of planets

from star outward neatly alternates large-small-

tell astrophysicists about how planetary systems form? One key is the relative distribution of mass

among planets in a system. Higher mass systems

seem consistent with planets assembling in place.

So what do the observations and calculations

One possibility is very cold temperatures. At 100K, small objects may be covered with water ice, dry ice, and other ices, so when objects collide, they stick together. Another possibility suggested by fluid-dynamics simulations is that turbulence in the collapsing solar nebula causing some fluid wavelike behavior in local areas of the gravitational collapse that triggers a jump from dust to boulders.

by Trudy E. Bell, M.A.

The University of California High-Performance AstroComputing Center (UC-HIPACC), based at the University of California, Santa Cruz, is a consortium of nine University of California campuses and three Department of Energy laboratories (Lawrence Berkeley Laboratory, Lawrence Livermore Laboratory, and Los Alamos National Laboratory). UC-HiPACC fosters collaborations among researchers at the various sites by sponsoring an annual advanced International Summer School on AstroComputing (ISSAC), offering travel and other grants, co-sponsoring conferences, and drawing attention to the world-class resources for computational astronomy within the University of California system. More information appears at http://hipacc.ucsc.edu.

Page 4

Adopt a Telescope Program - Signup Sheet

	Adoptee	Scope	Location
<u>1</u>	Sue Timlin	18" F/4.5 Obsession	Wiesen Observatory
<u>2</u>	Neil Simmons	12.5" F/7.4 Buckstaff	B Dome
<u>3</u>	Russell Chabot	12.5" F/9 Armfield	A Dome
4	Dan Yanko	10'' F/6 Newtonian	Albrecht Observatory
<u>5</u>	Tamas Kriska	25'' F/15 Zemlock	Z Dome
<u>6</u>	Henry Gerner	12" LX 200	Tagney Observatory
<u>7</u>	Jeffrey Fillian	14'' Z-Two scope	Ray Zit Observatory
<u>8</u>	Vacant	10" LX 200	Jim Toeller Observatory

At Your Service

Officers / Staff

President	Scott Jamieson	262-592-3049
Vice President	Brian Ganiere	414-961-8745
Treasurer	Russell Chabot	414-881-3822
Secretary	Agnes Keszler	414-581-7031
Observatory Director	Gene Hanson	262-354-0138
Asst. Observatory Director	Jill Roberts	414-597-9422
Newsletter Editor	Tamas Kriska	414-581-3623
Webmaster	Robert Burgess	920-559-7472

_

Board of Directors

Robert Burgess	920-559-7472
Russell Chabot	414-881-3822
John Hammetter	414-519-1958
Gene Hanson	262-354-0138
Lee Keith	414-425-2331
Agnes Keszler	414-581-7031
Tamas Kriska	414-581-3623
Neil Simmons	262-889-2039
Michael Smiley	262-825-3981
Sue Timlin	414-460-4886
Dan Yanko	262-255-3482

/						
Janu	lary/February	Key Holders				
1/18	Paul Borchardt	262-781-0169				
1/25	Henry Gerner	414-774-9194				
2/1	Scott Jamieson	262-896-0119				
2/8	Jill Roberts	414-597-9422				
2/15	Tim Hoff	262-662-2212				
2/22	Lee Keith	414-425-2331				

MAS Observatory

18850 Observatory Rd New Berlin, WI

www.milwaukeeastro.org